
Technical Report

CMU/SEI-89-TR-25OTIC FILE COPY ESD-89-TR-33

Carnegie-Mellon University

Software Engineering Institute

to

Classifying Software Design
Methods

John P. Long

William G. Wood

* David P. Wood

August 1989
,/

*DTIC
ELECTE D
SEP 2 4199

./

*Vs

\-,4

Technical Report
CMU/SEI-89-TR-25

ESD-89-TR-33
August 1989

9

Classifying Software Design Methods

John P. Long

SYSCON Corporation,

Resident Affiliate, SEI

• William G. Wood

David Wood

Specification and Design Methods

and Tools Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
C arnc;c Mellon Univerbity

Pittsburgh, Pennsylvania 15213

0

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this technical report should not be construed as an
official DcD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

SEI Joint Program Office V*: C -

br,0 - -

eo~v By

Dist

A-1
This work is sponsored by the U.S. Department of Defense. -

Copyright * 1989 Carnegie Mellon University
This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on
ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce,
Spnngfield, VA 22161.
AdaGRAPH is a trademark of The Analytic Sciences Corporation. PAMELA and PAMELA-2 are trademarks of George
W. Cherry.
'-c of any ^0,or tradema ,ks in this technical report is not intended in any way to infringe on the rights of the trademark

holder.

Table of Contents
1. Introduction 1
2. Classification Scheme 2

2.1. Views of the System 2
2.2. Software Development Stages 3
2.3. High-Level Classification Scheme 3

3. Classification of Design Methods for Ada Software 3
3.1. Derivation of the Classification Scheme 3
3.2. Background on the Design Methods 5

4. Conclusion 5
5. References 7

Appendix A. Discussion of the Classification 9
A.1. High Level Outline 10
A.2. Graphical Representations 12
A.3. Use of Ada Features 18
A.4. Application Environment Considerations 20

CMU/SEI-89-TR-25 I

0

0

0

0

0

S

CMU/SEI-89-TR-25

0

List of Figures
Figure 1: The Classification Matrix 4
Figure A-i: A High-Level Outline 10
Figure A-2: Graphical Representations 12
Figure A-3: Booch's Graphical Representations 14
Figure A-4: Buhr's Graphical Representations 15
Figure A-5: PAMELA's Graphical Representations 16
Figure A-6: SYSCON's Graphical Representations 17
Figure A-7: Use of Ada Features 18
Figure A-8: Application Environment Considerations 20

CMU/SEI-89-TR-25 Ill

Classify g Software Design Methods
Abstract. A few mature and popular methods are currently being used to specify and
design real-time embedded systems software, and these methods are the basis for a
large number of tools automating the process. Unfortunately, some of the tools support
only parts of a method, while others support a mixture of different methods. Because of
the large number of tools involved, companies selecting tools for their particular needs
are faced with a significant problem. As a result, the chcice of tools often depends on
the best salesperson rather than on the most appropriate method, leading to dis-
appointment on the part of end users of the tools. The Software Engineering Institute
(SEI) has had a project underway for some time that provides a basis for selecting
methods and tools. This paper describes some of the results of this effort with respect
to classifying design methods for Ada-based software.

1. Introduction
There are many organizations of various shapes and sizes engaged in evaluating software devel-
opment methods, and tools supporting those methods, for use in developing applications soft-
ware for embedded systems. Current "popular" methods have been developing over the past 15
years, and have recently increased in popularity due to the development of bit-mapped graphical
workstations that support automation of those methods. There have been numerous forms of
publications interrelating design methods: special issues [TSE 861; surveys [Yau 861; classifica-
tions [Hesse 84, Kelly 87]; tutorials [Freeman 83, Bergland 81]; and comparisons [DOD 82]. All of
these publications are useful for understanding, classifying, and evaluating design methods; but
none of them leads to a process for effectively comparing methods with the intent of selecting a
method for a software development project. The Software Engineering Institute (SEI) has had a
project underway for some time that provides a basis for selecting methods and tools. This paper
describes some of the results of this effort with respect to classifying design methods for Ada-
based software. Some of the principal project ideas that differentiate this classification from the
previously noted classifications are enumerated below.

1. Separate the classification and evaluation of methods from supporting tools. This is
necessary to distinguish between a good method with poor tool support and a poor
method with good tool support.

2. Separate the classification of methods (describing what a method does) from the
evaluation of a method's capabilities (describing how well it does it).

3. Use a simple and concise classification scheme, even if evaluation criteria are com-
plex and numerous.

4. Use a scheme that is independent of the process that produces the software. A
successful approach does not consider whether the process uses a waterfall or
spiral model, or whether it proceeds from a bottom-up, top-down, or middle-out

* point of view.

The remainder of the paper describes the classification scheme. In Appendix A, a classification
of some of the currently popular design methods for Ada-based software is presented.

CMU/SEI-89-TR-25 1

2. Classification Scheme
At all stages in a development process, a representation of the system under development must
be created, and it is important to understand how this representation is created. Following
(Hesse 841, each method has three considerations:

" What is the form of representation of the artifacts?
" How are these representations derived?
" How are the representations examined?

The representations may include graphical and textual information, and such considerations as
how they can be partitioned for separate development and integrated smoothly when necessary.
The derivation of the representations can involve some automatic transformations, but consists
largely of guidelines, rules, and procedures to successfully derive the representations. The ex-
amination of representations can be analytic (and hence can be automated) or can involve
manual techniques such as walkthroughs and inspections.

2.1. Views of the System
The classification scheme described in this paper uses only the different forms of representation
to classify the methods, and following [Harel 86], considers three distinct views as described
below.

1. The functional view shows the system as a set of entities performing relevant
tasks. This includes a description of the task performed by each entity and the way
the entity interacts with other entities and with the environment. Ideally, the func-
tional view should complement the behavioral view (described below). Each trans-
action in the behavioral view should be traceable through the system from the initial
input through the interfaces and functional units to the final output. The functional
view is the normal starting point for the design process because it is commonly the
way the system is decomposed into smaller and simpler parts.

2. The structural view shows how the system is put together-the components, the
interfaces, and the flow between the components through the interfaces. It also
shows the environment, and the interfaces and information flows between it and the
system. Ideally, the structural view should be an elaboration of the functional view.
Each entity in the functional view is decomposed into a set of primitive software
components that can be implemented separately and then combined to build the
entity. The design process therefore generally converts a functional view into a
structural view. However, the structure of a system is influenced by resource con- S
straints that prevent the use of arbitrarily many or arbitrarily large components. The
structure is also influenced by certain implementation constraints, which require that
specific types of components (e.g., MIL-STD-1750a processors) be used, or that
components be connected in a specific manner (e.g., by MIL-STC 1553 buses).

3. The behavioral view shows the way the system will respond to specific inputs:
what states it will adopt, what outputs it will produce, what boundary conditions exist
on the validity of inputs and states. This includes a description of the environment
that is producing the inputs and consuming the outputs. It also includes constraints
on performance that are imposed by the environment and function of the system.
Real-time systems especially have performance requirements as an essential part
of their correct behavior.

2 CMU/SEI-89-TR-25

2.2. Software Development Stages
The different development stages used in the classification scheme are enumerated below. Each
development stage is characterized by what it represents and the way it represents it.

1. The first stage is to take an ambiguous, incomplete, and inconsistent requirement
and turn it into a flawless specification. This is probably not yet possible with
current technology, but there are many reasonable ways of proceeding that give a
serviceable specification. The specification describes what the software is to do
and the constraints to be imposed on the designers. Although the design process is
not the primary consideration in this paper, it is worthwhile noting that production of
the specification is not limited to a front-end activity, but will change throughout the
life cycle of the system.

2. The design representation describes how the system is structured to satisfy the
specification. It describes the system in a large-grained manner. It defines the
breakup of the system into major tasks, describes persistent data objects and their
access mechanisms, the important abstract data types and their encapsulation in
the heavyweight tasks, and the message structures between the tasks. There must
also be some consideration for how the resources are to be allocated and the per-
formance requirements satisfied.

3. The final development stage is Implementation with source code, object code,
resource usage, and initialized data structures. This is the level at which algorithms
are develcped and represented explicitly.

We chose not to include the requirement, since it is a description of what end-user audiences
view as their needs, is often a rather eclectic description, and usually covers the needs of each
audience in the end-user community in a very uneven manner.

2.3. High-Level Classification Scheme
The scheme for the classification of software development methods is presented in [Firth 871.
The matrix categorizes methods into three development phases (specification, design, and
implementation) and three forms of representation (functional, structural, and behavioral) as
shown in Figure 1. This scheme is considered useful for general classifications to initially reduce
the number of methods to consider. The classification scheme presented in the following section
represents an enhancement of the original matrix that facilitates the side-by-side, in-depth com-
parison of multiple design methods.

3. Classification of Design Methods for Ada Software
This section presents classifications of four methods that have been proposed for the design of
Ada-based software systems. The derivation of the classification scheme is discussed, along
with details of the classification itself.

3.1. Derivation of the Classification Scheme
The high-level classification matrix (Figure 1) describes a single method using the vertical matrix
column to show development phases and the horizontal rows to show representational forms.
The detailed scheme (shown in Figures A-1 through A-8) provides the capacity to describe sev-
eral methods on one page, where each vertical column describes one method and the horizontal
rows classify specific aspects of each method, simplifying direct comparison of features.

CMU/SEI-89-TR-25 3

0

Specification Design Implementation

Functional
Views
of the Structural

System
Behavioral

Stage* of Oevweppmnt

Figure 1: The Classification Matrix

The detailed scheme can comprise one or several charts. At a minimum, one chart must be

provided that contains the same information provided on the high-level matrix, namely, the devel-

opment phase(s) covered by the method and the representation forms used. In addition, rows

are also provided in this first chart to describe high-level classifications of notations, derivation

techniques, and forms of examination available with each method.

Since the methods to be classified are all Ada-based and use graphical representations, there is

more depth in the charts on both Ada and graphical representations. During the development

of the classification charts, two or three of the methods were quickly charted to test the relevance
of the criteria. Not all criteria for classification of design methods was intended to be included in

the charts. Our classification charts were devised to illuminate the Ada-based and graphical
nature of the methods classified. We did not include criteria which would produce empty rows

even though the criteria may be of importance to designs of particular systems. Additional charts

could be devised to classify further items of importance or to provide a greater level of detail as

ne -essary.

We feel that a clear distinction between classifying methods (describing what methods do) and

evaluating methods (saying how well they do it) is important. The goals of the classification

scheme are to keep the classification simple, but meaningful. The classification scheme is di-
rected toward technical considerations, while administrative and economic considerations are left

to evaluation.

4 CMU/SEI-89-TR-25

3.2. Background on the Design Methods
The classification scheme discussed above has been used to describe four methods for software
design which we will refer to as: Booch, Buhr, PAMELA, and SYSCON. The background on
each of these methods follows.

In his book entitled Software Engineering in Ada, Grady Booch "introduced an object-oriented
design methodology that exploits the power of Ada and, in addition, helps us to manage the
complexity of large software solutions." An additional Booch book, Software Components with
Ada, concentrates on reusable software components, Ada programming style, object-oriented
techniques, data structures and algorithms. The classification is based the software development
principles and the object-oriented design methodology embodied in these books, [Booch 83] and
[Booch 87].

The objectives of R. J. A. Buhr's book entitled System Design with Ada were to provide a design-
oriented introduction to Ada, to present and to illustrate a graphical design notation, and "to arm
the novice system designer with philosophies, strategies, tactics, techniques and insights into
ways of effectively carrying out the design process". The classification is based the "object-
oriented structured design" approach presented in the book, [Buhr 84].

PAMELA, Process Abstraction Method for Embedded Large Applications, and PAMELA-2, Pic-
torial Ada Method for Every Large Applications, were created by George W. Cherry. PAMELA
was documented in the PAMELA Designer's Handbook as an Ada specific software development
method that is based on a high-level, graphical program design and description language.
PAMELA-2 retains PAMELA's features for supporting process-oriented design, and was enhance
to add support for object-oriented design and behavioral specifications. The graphical represen-
tations were adapted from [Booch 831 and [Hoare 85]. The PAMELA method is directly supported
by the software tool AdaGRAPH. This classification was based on both PAMELA Designer's
Handbook, [AdaGraph 86a] and [AdaGraph 86b], and PAMELA-2: An Ada-Based Object-
Oriented Design Method, [Cherry 88].

SYSCON's methodology manual describes the design method developed during their work on
Ada contracts and Ada research and development projects. The method and the accompanying
graphical representations were influenced by the work of [Booch 831 and [Buhr 84]. SYSCON's
development of a suite of Ada design and development tools illustrate the method. Therefore,
SYSCON's methodology manual and users manuals from the suite of tools were referenced for
the classification. Currently, SYSCON's methodology manual and the suite , tools are company
proprietary.

4. Conclusion
There are some mature software development methods and many tools supporting those meth-
ods (or parts of them) available in an expanding commercial marketplace. Those methods and
tools can assist experienced engineers and managers to produce a high quality, maintainable
software product. But they should be purchased with the realization that they are not a panacea
for removing all software development problems. They all have weaknesses and limitations, and
it is important to determine how to work around those weaknesses effectively.

CMU/SEI-89-TR-25 5
S

Classifications such as these are intended only to categorize methods to help simplify the selec-
tion process. The classifications tell us very little about the quality of a particula. method, its
suitability to a given application, or the level or quality of automation in terms of tool support.
Such matters are certainly important in the final selection of methods, but are beyond the scop,
of classifications such as these.

Reasonable choices and decisions can be made by examining the information in this paper and
by applying the classification scheme to other canoidate methods. Armed with classifications of
candidate methods, an organization can pursue the detailed evaluation of these and other impor-
tant characteristics of methods prior to final selection.

6 CMU/SEI-89-TR.25

I I "0

5. References

[AdaGraph 86a] TASC (The Analytic Sciences Corporation).
Pamela Designer's Handbook, Volume 1: Commentary and Ada PDL and

Code.
June, 1986

[AdaGraph 86b] TASC (The Analytic Sciences Corporation).
Pamela Designer's Handbook, Volume 2: Figures and Graphs.
June, 1986

[Bergland 81] Bergland, Glenn D., and Gordon, Ronald D.
Tutorial: Software Design Strategies, 2nd Edition.
IEEE Computer Society Press, Los Angeles, 1981.

(Booch 83] Booch, Grady.
Software Engineering with Ada.
Benjamin/Cummings, Menlo Park, CA, 1983.

[Booch 87] Booch, Grady.
Software Components With Ada-Structures, Tools, and Subsystems.
Benjamin/Cummings, Menlo Park, CA, 1987.

[Buhr 84] Buhr, R.J.A.
System Design with Ada.
Prentice-Hall, Englewood Cliffs, N.J., 1984.

[Cherry 88] Cherry, George W. Cherry.
PAMELA 2: An Ada-Based Object-Oriented Design Method.
Conference paper.
February, 1988

[DoD 82] Ada Joint Program Office.
Ada Methodologies: Concepts and Requirements.
Technical Report, Department of Defense, November, 1982.

[Firth 87] Firth, R., Wood, B., Pethia, R., Roberts Gold, L, Mosley, V., and Dolce, T.
A Classification Scheme for Software Development Methods.
Technical Report CMU/SEI-87-TR-41, ESD-TR-87-204, Carnegie-Mellon Uni-

versity, Software Engineering Institute, November, 1987.

[Freeman 83] Berra, Bruce P.; Carroll, Bill, D.; Cotton, Jack; Cox, Jerome, R .Jr.; Nahouraii,
Ez; and Wu, Chuanlin (editors).
Tutorial on Software Design Techniques, 4th Edition.
IEEE Computer Society Press, Los Angeles, 1983.

[Harel 86] Harel, David.
Statecharts: A Visual Approach to Complex Systems.
Concurrent Systems, February, 1986.

[Hesse 84] Hesse, Wolfgang.
A Systematics of Software Engineering: Structure, Terminology and Classifi-

cation of Techniques.
NATO ASI Series: Program Transformation and Programming Environments,

Vol F8.
1984

CMU/SEI-89-TR-25 7

[Hoare 851 Hoare, C. A. R.
Communicating Sequential Processes.
Prentice/Hall International, London, 1985.

[Kelly 87] Kelly, John C.
A Comparison of Four Design Methods for Real-lime Systems.
Research paper supported by a NASA/ASEE fellowship at JPL, CA.
1987

[TSE 861 The Institute of Electrical and Electronics Engineers, Inc.
Special Issue.
IEEE Transactions on Software Engineering SE-1 2(2), February, 1986.

[Yau 86] Yau, Stephen S., and Tsai, Jeffery J. P.
A Survey of Software Design Techniques.
IEEE Transactions on Software Engineering SE-i 2(6):713-721, June, 1986.

8 CMUISEI-89-TR-25

Appendix A: Discussion of the Classification

A successful classification of design methods would highlight the differences among the chosen
methods in a straightforward manner, yet still allow for the classification of other methods as
needed. A clear classification should also facilitate detailed assessment of the methods, allowing

the evaluator to concentrate on investigating the particular differences among the methods rather

than the similarities. A good classification scheme should also eliminate the ambiguity of conflict-
ing terminology that is prevalent in the field of software development methods. We have devel-

oped the classification charts and their accompanying descriptions to satisfy the desired charac-

teristics of a classification.

As described previously, Figure A-1 provides a high-level outline of the characteristics of each of

the four methods. One can determine quickly where the similarities lie (e.g., formats of
representation) as well as the differences (e.g., behavioral views). This allows the evaluator to

focus energy on assessing those areas that are most likely to be discriminating factors in the
selection of a method. In that light, we have further classified the four methods to an additional
level of detail: Figure A-2 classifies graphical representations and is elaborated by the presen-
tation of the icons for each method in Figures A-3 through A-6, Figure A-7 classifies the use of
Ada features, and Figure A-8 classifies application environment considerations.

Depending on your concerns, extension of the classification scheme may be appropriate, but we
recommend that the classification remain a simple scheme with a technical focus. Below is a
limited list of additional technical criteria that may be relevant to classifying other design methods.

multi-program interfaces communicating between separate programs

persistent objects describing characteristics (e.g., sequential or direct
file access)

periodic/aperiodic events managing response times for both regular process-
ing and "burst" processing

hard deadline scheduling satisfying critical jobs for real-time systems

system redundancy providing standby systems with nearly instan-
taneous switchover

fault tolerance minimizing downtime due to failure conditions

* data extraction debugging in the target environment

formal representations deciding program completeness and consistency

programming languages suiting the design method to the implementation
constraints

CMU/SEI-89-TR-25 9

0

A.1. High Level Outline

Booch Buhr PAMELA SYSCON

Development design design design design
Phase

Functional Ada OOD diagrams; data flow diagrams; hierarchical Ada structure graphs;
View Ada PDL Ada PDL process graphs; Ada PDL

Ada PDL

Structural Ada OOD diagrams; Ada structure graphs; library graphs; Ada structure graphs;
Vlew Ada PDL Ada PDL specifications; Ada PDL Ada PDL

Behavioral task icons; finite state machines; finite state machines; task icons;
View Ada PDL task idioms; Ada PDL task idioms; process Ada PDL

graphs; Ada PDL

Formats of graphical; textual graphical; textual graphical; textual graphical; textual
Representation

Derivation heuristics heuristics heuristics heuristics
Techniques

Examination analysis analysis; walk-through analysis analysis; animation;
Techniques prototype execution

Figure A-1: A High-Level Outline

Object-oriented development is founded uoon the view that a program implements a model of
reality that can be identified as a set of objects that interact with each other. The major steps in

Booch's method to object-oriented development are to:

1. Identify the objects and their attributes.
2. Identify the operations suffered by and required of each object.

3. Establish the visibility of each object in relation to the other objects.
4. Establish the interface of each object.
5. Implement each object.

Buhr proposes an informal design methodology that is based on the data-flow-driven structured
design strategy. The major steps are to:

1. Identify the major obvious subsystem modules.
2. Sketch the data flow external and internal to the major modules.
3. Refine the data flows and modules internals.
4. Assign functions in detail to modules.
5. Develop one or more structure graphs defining candidate architectures in terms of

packages and tasks.
6. Define the system interfaces in detail.

10 CMU/SEI-89-TR-25

The major steps of the PAMELA-2 method to software design are to:

1. Develop the external objects graph.
2. Develop the top-level library graph.
3. Develop the specification for each module in the top-level library graph.

4. Develop the top-level processing graph.
5. Write internal logic description for each simple unit identified in steps 2-4.

6. Repeat steps 2-4 for each component and nonsimple unit until all components have
library graphs, specifications, and processing graphs.

SYSCONs method splits the design into two major phases, the top-level design and detailed level
design, and advocates the use of compilable program design language (PDL) to augment and
clarify data structures and processing throughout the design process. The major steps to the
method are to:

1. Perform the top-level design to:

a. Identify the virtual package (subsystem) components.
b. Identify the dependencies among the virtual package components.
c. Identify the library units.

d. Identify all exported (visible) package units.
e. Identify compilation unit dependencies.
f. Identify the internal (hidden) package units.
g. Identify nested program components.

h. Establish the data flow logic by specifying formal parameters, and the asso-
ciated visible types, for exported tasks, subprograms, and generic declara-
tions.

i. Establish the major control flow logic between, and within, complex visible
compilation units.

j. Identify the exported exceptions.

2. Perform the detailed-level design to:

a. Complete the specification of all components of the visible and private por-
tions of all library units.

b. Refine the nested program components by identifying nonvisible Ada tasks.
c. Complete the identification of local types and variables within the program

units.
d. Refine the major control flow within complex visible program units.
e. Establish the major control flow logic within all program units.
f. Identify exception handlers.

CMU/SEI-89-TR-25 11

0

A.2. Graphical Representations
A

Booch Buhr PAMELA SYSCON

Show Software Ada OOD diagrams; Ada structure graphs; library graphs; Ada structure graphs;
Program Structure nested icons; nested icons; hierarchical icons; nested icons;

subsystem uncommitted module super component virtual package

Show Dependency dependency/data data flow icons; import links; visibility linesStructure lines access lines data flow links

Show Calling dependency/data access lines; call links; call lines;
Structure lines; ordered ordered ordered unordered

Illustrate dashed outline added area on annotations
Generics for Icon top of icon within icon

Illustrate entry calls; unconditional, unconditional, unconditional,
Communication dependency/data conditional, and conditional, and conditional, andto Tasks lines timed entry calls; timed entry calls; timed entry calls;

unguarded and unguarded and unguarded and
guarded entries guarded entries guarded entries

Describe Package

Specification
(The Interface)

Variable/Constants yi y3 yS x
Types yt y3 y5 x
Packages x x
Procedures y2 y4 y6 X
Functions y2 y4 y8 x
Tasks (entries) y4 y6 x
Exception no x x x
Private Part no no no

SLeged:
no not 'aphically mp eented
x -graphltly reps-ne -nquely

SyO -g1phlcly repesented wtth other y# with sana C
. -not explicitly represented, bX Wrmd

Figure A-2: Graphical Representations

The graphical representations that are used to show software program structure are presented
in Figures A-2 through A-6. Each method extended the representations beyond the scope of Ada
by including an icon to provide an abstraction that has no direct Ada syntactic identity. Booch
uses a subsystem icon and PAMELA uses a super component to group logically related library
units. Additionally, SYSCON's virtual package icon and Buhr's uncommitted module icon also
allow the designer freedom by not forcing commitment to a particular Ada construct early in the
design process.

The differently named graphical representations showing the dependency structure are de-

scribed below to highlight their usage. Booch's dependency/data line can be used to represent
an Ada context clause or to denote data flow. Buhr uses two representations to show data
access and data flow. PAMELA uses import links to denote an Ada context clause and annotated
data flow links to show data flow. SYSCON uses the visibility lines to represent an Ada use
clause.

12 CMU/SEI-89-TR-25

Buhr's graphical representations include a feature to Illustrate communication to tasks not
exposed in the classification chart or Figure A-4. Buhr provides a means for grouping entries of
tasks. The grouping feature provides a closer representation to the intended design of the select
statement within the task body.
Because all of the methods contain graphical representations for packages, subprograms, and
tasks (although the icon shape may be different), we chose to concentrate on the package speci-
fication. The package specification (the interface) criterion is used to describe how the method
represents the exported items of an Ada package. Booch has one icon that represents both Ada
objects and Ada types, and one icon that represents both procedures and functions. Buhr de-
scribes the interface in terms of nonprocedural and procedural sockets, where nonprocedural
sockets refer to objects and types while procedural sockets include procedures, functions, and
task entries. PAMELA does not export entities by placing icons on the edge of the parent entity;
itistead the entry, procedure, and function interface is actually defined by the call link attached to
the package. SYSCON uses unique icons for each of the listed entities that can be declared
within the package specification.

CMU/SEI-89-TR-25 13

Body with
Specification Body Subunits

Subprogram "zEI
Package

Task

' ' •
Generic
Subprogram

Generic " .""
Package " .

Dependency/
Data flow- Subsystem

Order of access

Figure A-3: Booch's Graphical Representations

14 CMU/SEI-89-TR-25

I l I IS

Package with

procedural Package with

*Sockets" exception

Package with
non "socket'
procedural

* '~*~Task with
entry7Sockets*

Conditional

Access connection
(procedure call, entry call,

or data access)
2) Timed

() call
Order of accessca

(if not top-to-bottom
or left-to-right)

' Data flow

(I) Data

Uncommitted module

(variously called cloud,
bubble, amorphous conceptual

glob, functional unit)

Figure A-4: Buhr's Graphical Representations

CMU/SEI-89-TR-25 15

subprogram sequential generic super import
package sequential component

package ("subsystem")

Notes: 1. There are similar concurrent library packages. 2. Library units have bold borders.

Library Graph Nodes and Link

global subprogram task instantiated control
variable generic node

subprogram

et cetera

external sequential concurrent instantiated instantiated
object package package generic generic

sequential concurrent
package packageL ------ J

Notes: Library units and entities exported from library units may be nodes on processing graphs.

Processing Graph Nodes

external internal parameter- parameter- shared
data flow data flow ized call less call or variable

or or control node read or
interrupt control execution write

x x lx

interrupt halt x ? halt

Processing Graph Links

Figure A-5: PAMELA's Graphical Representations

16 CMU/SEI-89-TR-25

I 0

PACKAGE SPECIFICATION EXPORTS
VIRTUAL PACKAGE (PLACED ON LEFT EDGE OF PACKAGE)
(SUBSYSTEM).............~ -name VARIABLE

(name) TYPE

name # PACKAGE

Iname I PROCEDURE

I=name I FUNCTION

% name % TASK

/ name / TASK ENTRY
< name > EXCEPTION

PACKAGE GENERIC INSTANTIATED
PACKAGE GENERIC PACKAGEygd g

PROCEDURE GENERIC INSTANTIATED
PROCEDURE GENERIC PROCEDURE

*" _I

FUNCTION GENERIC INSTANTIATED
FUNCTION GENERIC FUNCTION

*gd

SINGLE TASK TASK TYPE TASK OBJECT

tt toE7 /y /ty
EXECUTING BODY UNCONDITIONAL CALL

C- CONDITIONAL CALL
T TIMED CALL

0V ------- VISIBILITY LINE

Figure A-6: SYSCON's Graphical Representations

CMU/SEI-89-TR-25 17

A.3. Use of Ada Features

Booch Buhr PAMELA SYSCON

Use (Reuse) separata compilation; separate compilation separate compilation; separate compilation:
of Library reuse (extensive) reuse reuse via repository
Components via component

catalog

Use of Packages declarations, declarations, AP, ADT, ASM declarations,
program units, program units, program units,
ADT, ASM ADT, ASM ADT, ASM

Use of Tasks general, 4 application general, 8 functional specific, 13 task general,
areas types idioms unlimited

Use of Generics parameterized deferred to parameterized parameterized
template implementation phase template template

Use of Exceptions resolve error states resolve internal errors; resolve error states resolve error states
use parameters at
module interfaces

ADT -AbstractOat, Types
ASIA Abstract State Machines Z
AP Abstract Process

Figure A-7: Use of Ada Features

The use of packages to embrace the software engineering principles of modularity, localization,
abstraction, and information hiding is fairly consistent across the methods. The only difference in
the classification chart is due to PAMELA's process orientation, which adapted the term abstract
process for a multi-threaded package.

The classification information for the use of tasks needs further elaboration because the depth in
which the methods describe the use of this Ada feature is so varied.

Booch divides the application of tasks into four general areas:

" concurrent actions
" routing messages
" managing shared resources
" interrupt handling

The four gdneral areas are elaborated into specific examples that expand the four application
areas into the apparently broader range given by Buhr and PAMELA.

Buhr lists eight canonical, structured system parts that may be composed of tasks:

" slave
" server
" scheduler

18 CMU/SEI-89-TR-25

6

" buffer
* secretary
* agent
" transporter or messenger
" users or managers

These parts are classified and discussed so that the appropriate system part is selected for a
particular circumstance.

PAMELA defines thirteen task Idioms that identify "sensible" units to implement with Ada tasks:

* binary semaphore
e bounded buffer
e bounded pushdown automaton
o cyclic activity
* device driver
* forwarder
e hybrid
o interrupt handler
* monitor
* pump
* unbounded buffer
e unbounded pushdown automaton
e state machine

The method considers the thirteen task idioms as the basic building blocks for real-time software
dcsign.

SYSCON's method follows along the same approach of Booch. The designer is provided
unlimited use of the task construct. The method does not restrict the use of tasks to a particular
system component and does not define explicit task primitives.

The use of generics is consistent across the methods due to the nature of this Ada feature.
Generics provide the ability to create code templates, which are parameterized or not, from which
corresponding subprograms or packages can be instantiated. The phase of the development
cycle in which this feature is exploited exposes a slight difference in the methods. Booch,
PAMELA, and SYSCON discuss the use of generics from initial design through implementation to
use and develop reusable components. Buhr's philosophy is that the use of generics is more
closely related to implementation than system design.

The design mechanism for dealing with errors or other exceptional situations that arise during
Ada program execution is provided by the use of exceptions Booch states that exceptions
should be used to plan for the resolution of possible error states of the objects and algorithms,
and not to provide some sort of implicit goto facility. Buhr feels that exceptions should be
relegated to the level of internal details within modules, with errors at module interfaces handled
by parameters of calls. PAMELA implements exceptions for error conditions within callable proc-
esses and subprograms and requires all callers to have an exception handler when an exception
can be propagated. SYSCON uses exceptions and localized exception handlers for truly abnor-
mal error or exceptional circumstances, and not to effect normal changes in control flow.

CMU/SEI-89-TR-25 19

A.4. Application Environment Considerations

Booch Buhr PAMELA SYSCON

Enforce some graphicalPerformance annotations
Constraints

Enforce
Resource
Constraints

Interact with representation representation representation representation
the Low-Level clauses; predefined clauses; predefined clauses: predefined clauses; predefined
Environment packages, pragmas, packages, pragmas, packages, pragmas, packages, pragmas,

attributes ant ,outes attributes attributes

Manage Error recommends handling intertask protocols; recommends handling recommends hancling
Conditions at lowest proper level reliability units at lowest proper level at lowest proper level

Assist System Ada PDL; package Ada PDL; package Ada PDL; package Ada PDL; package
Integration specifications; specifications; specifications; specifications;

graphical charts graphical charts graphical charts graphical charts

Develop Testing instrumented simulations from listrumented code;
Strategies testbeds the external objects animations

graphs

Figure A-8: Application Environment Considerations

Although our classification has concentrated on Ada and graphical representations, this chart
would be applicable for classifying design methods that are not Ada-based or do not contain
graphical representations. The emphasis of this chart is to show how the methods support the
designer with regard to application enviro!iment considerations.
The design methods classified provide very little direction in enforcing performance and
resource constraints imposed by the system specification. Real-time programs must provide
confidence about timing correctness at the tasking level of abstraction and must manage
resources such as CPU, 1/O drivers, and memory. Therefore, design descriptions must include a
means of representing, or directly referencing, these performance ,nd resource usage require-
ments as presented in the specification. The design should sufficiently direct the implementation
to enforce the requirements. By incorporating performance and resource requirements into the
design descriptions, the program structure is more likely to persevere through the implementation
phase.

The exception construct within Ada allows one to manage error conditions at the lowest level by
alternative courses of action (as stated in [Booch 83]). Namely, these alternatives are:

* Abandon the execution of the unit.
" Try the operation again.
" Use an alternative approach.

20 CMU/SEI-89-TR-25

" I i

* Repair the cause of the error.

Expanding on the area of managing error conditions, Buhr introduces intertask protocols and

reliability units for controlling aberrant behavior:

Intertask protocols Formalized dialogue between tasks for the purposes of reliable
communication in the face of possible failures of either the en-
tities or the communications medium between them, but not
failure of the protocol.

reliability units One or more tasks with an associated communication package
that is isolated from other reliability units but which provides for
reliable communication via intertask protocols with other
reliability units.

Booch doesn't develop test strategies but suggests a "design a little, code a little, test a little"

approach. Buhr exp;ains the design of instrumented testbeds for complete systems in operational

form to detect, record, and isolate bugs. PAMELA suggests supporting the testing of the ex-

ecutable units by developing simulations of the external objects graph. SYSCON uses code

instrumentation techniques to generate test log files, which are then used to animate the graph-
ical representations.

CMU/SEI-89-TR-25 21

0

0

0

0

0

0

0

0

0

22 CMU/SEI-89-TR-25

0

UNLIMIIED_ INCLAgSUTnF
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE

2.. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE

2b. DECLASSIFICATION/OOWNGRAOING SCHEDULE DISTRIBUTION UNLIMITED

N/A
A. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-89-TR-25 ESD-89-TR-33

6&. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applica bie)

SOFTWARE ENGINEERING INSTITUTE/ SEI SEl JOINT PROGRAM OFFICE

7c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Codel

CARNEGIE MELLON UNIVERSITY ESD/XRSI

PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

8. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003

Bc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

SOFTWARE ENGINEERING
INSTITUTE JPO

PTTTSRIRGH. PA 15213 N/A N/A N/A
11. TITLE (Include Security Clanificationj

CLASSIFYING SOFTWARE DESIGN METHODS
12. PERSONAL AUTHOR(S)

JOHN P.LONG. WILLIAM q, WOOD, DAVID WOOD
13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

FINAL FROM _ TO _ AUGUST , 1989 22

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR.

19. ABSTRACT (Continue on reverse if necessary and identify by block number
)

A few mature and popular methods are currently being used to specify and design real-time
embedded systems software, and these methods are the basis for a large number of tools
automating the process. Unfortunately, some of the tools support only parts of a method,
while others support a mixture of different methods. Because of the large number of tools
involved, companies selecting tools for their particular needs are faced with a significant
problem. As a result, the choice of tools often depends on the best salesperson rather
than on the most appropriate method, leading to disappointment on the part of end users
of the tools. The Software Engineering Institute (SEI) has had a project underway for
some time that provides a basis for selecting methods and tools. This paper describes
some of the results of this effort with respect to classifying design methods for Ada-
based software.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITEO fi SAME AS RPT 0 DTIC uSERS UNCLASSIFIED, UNLIMITED

22&. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
ilnclude I-11 C,,d.',

KARL SHINGLER (412) 268-7630 SEI JPO

DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PA4,-

